IGBT 用于中高功率开关电源、可再生逆变器、牵引电机驱动、感应加热和类似应用,最高可达数百千瓦。大型 IGBT
通常由许多并联器件组成,其阻断电压高达 6,500 V,能够处理数百安培。虽然 IGBT 的开关速度比 IGCT 快,但它们的开关频率低于功率 MOSFET。对于需要 300V 和 600V 之间器件的电源转换器,可
以使用 IGBT 和 MOSFET,具体取决于应用的具体需求;低于 600V,MOSFET 占主导地位,高于 600V ,IGBT 占主导地位。与 IGBT 一样,IGCT 是用于自换向功率转换器的完全可控功率开关。 IGCT
基础知识 IGCT 是相当于 IGBT 的晶闸管。由于它们是一种晶闸管,因此 IGCT 以压装包装形式交付。这与 IGBT 形成鲜明对比,IGBT 可用于更广泛的应用,并提供更广泛的封装样式(图 3)。 IGCT
是 GTO 与集成栅极结构的组合。它通过简化的栅极驱动提供 GTO 的高功率密度和低传导损耗。 IGCT 将栅极驱动结构与栅极换向晶闸管 (GCT) 晶圆级器件集成在一起。IGCT 和 GTO(IGCT 的来源)
均由栅极信号控制,并且都可以承受高 di/dt 率,这意味着大多数应用不需要缓冲器。在 IGCT 中,关闭器件所需的栅极电流高于阳极电流。高栅极电流与高 di/dt 比率相结合意味着传统互连不能用
于将 IGCT 连接到栅极驱动器。相反,栅极驱动 PCB 和 IGCT 作为一个单元交付。栅极驱动器用连接到 IGCT 边缘的大圆形导体围绕器件。大的接触面积和极短的连接距离降低了栅极连接的电感和电阻
, 与大多数晶闸管一样,IGCT 被制造为单个晶圆(图 4)。这与作为一系列单元制造的 IGBT 形成对比,每个单元的构造类似于 n 沟道垂直功率 MOSFET,除了用 p+ 集电极层代替 n+ 漏极并形成垂
直 PNP 双极结型晶体管。IGCT 的栅极结构和驱动拓扑支持比 GTO 快得多的关断时间。GTO 通常限于在 500 Hz 下运行,而 IGCT 可以在短时间内以高达几 kHz 的频率运行,长期最大开关频率为 500
Hz。IGCT 的额定关断电流为 520 至 5,000 A,典型阻断电压额定值为 4,500、 5,500 和 6,500 V。它们用于工业和牵引驱动、变频逆变器和交流隔离开关。多个 IGCT 可以串联或并联运行以用于更高
功率的应用。IGBT 的原理图符号源自 MOSFET 的符号,而 IGCT 的原理图符号源自晶闸管的符号(图 5)。 IGCT 具有三种结构: 能够阻断反向电压的 IGCT 称为对称 IGCT,或 S-IGCT。反向阻
断和正向阻断额定电压通常相同。 不能阻断反向电压的 IGCT 称为不对称 IGCT,或 A-IGCT。它们通常具有几十伏的反向击穿额定值。A-IGCT 用于永远不会出现反向电压的地方,例如开关电源或直
流牵引驱动器。或与并联反向导通二极管结合使用,例如在电压源逆变器中。 在同一封装中带有反向导通二极管的非对称 IGCT 称为反向导通 IGCT ,即 RC-IGCT。 IGBT 与 IGCT 由于工作
原理不同,很难使用数据表额定值比较 IGBT 和 IGCT。此外,IGBT 可提供更广泛的封装,从而提供更广泛的工作能力。通过限制与紧压封装器件的比较,IGBT 和 IGCT 可以使用多个因素进行比较,例
如是否需要缓冲器、它们的导通状态电压、导通和关断能量损耗、栅极电路要求和开关频率(表 1)。 IGBT 和 IGCT 是完全可控的四层功率开关,用于自整流功率转换器。IGBT 源自双极晶体管,而
IGCT 则基于门极可关断晶闸管 (GTO)。因此,与 IGCT 相比,IGBT 可用于更低电压和更低功率的应用,IGCT 主要用于需要至少 4,200 V 的工作电压和超过 500 A 的电流的应用。IGCT 是较慢的开关
器件,通常限制在大约500 Hz,而 IGBT 可以工作在几十 kHz。
型号推荐:
GE IS200ERDDH1ABA
GE IS200ERIOH1AAA
GE IS200EROCH1ABB
GE IS200HSLAH2ADE
GE IS200ISBBG2AAB
GE IS200JPDDG1AAA
IS200SAMBH1ABA MRP681847